
Paycryptos API documentation v.1.0

Table of contents

Change History 2

Introduction 3

Prerequisites 3

Holistic Picture 4

Deposit Algorithm 4

Withdrawal Algorithm 4

Configuration 5

Request and Response Format 5

Authentication 8

Testing (Ping) 10

Channels 12

Withdraws 16

Currencies 19

Callbacks 21

1

Change History

1.00 28 Aug
2020

Added new following sections:
● Table of contents
● Prerequisites - includes main required steps to prepare the client’s system

logic
● Deposit and Withdrawal algorithms
● CallBacks

Sections rearrangement, erratum corrections, updated sections description

Added Holistic Picture

Addresses section removed

2

Introduction

This document describes the Paycryptos REST API and everything that is necessary to access it's
resources. In order to use the API, you first need to have a verified Paycryptos account. If you did
not receive your credentials yet, please contact support@paycryptos.com

Prerequisites

● An account in PayCryptos needs to be set up by our customer service and credentials must
be provided to you. You also need to set up IP whitelists on both sides.

● Required crypto currencies and fiat currencies are switched on for your account in
PayCryptos

● Each user (meaning, player) is designated in a particular currency. It can be a crypto
currency, eg. Bitcoin account (BTC), Ethereum account (ETH), etc. Or it can be a fiat
currency, for example EUR or USD.

● There is an on the fly conversion, that you can allow or disallow. For example, you can
have EUR users access only to Bitcoin, USD users to Bitcoin and Ethereum, Bitcoin users
only to Bitcoin (so, no on the fly conversion in that case, only native cryptocurrency), etc.

● You can also set up currency conversion margins for such on the fly conversions (so that
buy and sell transactions use a slightly different exchange rate, just like a bank FX) or you
can have 0% margins.

● If a user is created in EUR, you will receive both the user currency deposit amount and the
original amount and the currency that was actually deposited.

● Conversion rates for crypto into EUR and EUR into other fiat currencies are kept up to date
to ensure the amounts deposited / withdrawn will be correct.

● Each user will receive a unique wallet address (there is a slightly different logic in different
crypto algorithms). Any payment to this wallet address will be considered as the payments
from the user and if there is a pending (new) deposit request from the user, such payment
will be considered as a payment by the user and a callback will be generated.

● The wallet addresses need to be prepared inside each wallet (there is a function in
advanced wallets to do so) and then uploaded to PayCryptos for the usage. Those need to
be replenished, as once they are used up, you won’t be able to generate a unique wallet for
users and an error will be sent to the owners.

● You also need to set up the number of confirmations for each crypto currency. The
confirmation for the deposit and confirmation for the release of funds are two separate
settings. Usually you want the user to receive the funds for playing as soon as possible, as
even a single block chain confirmation can take hours if there is a congestion.

● Therefore we suggest you to keep track of each deposit status, as you will receive three
callbacks for each successful deposit: xxxx, xxxx, xxxx. If you set up deposits to be credited
without a safe number of confirmations, such deposits should not be allowed in activity that
allows such deposits to be passed out of the system: eg. possibly sportsbook bets,
withdrawals, poker and other p2p transactions should not be allowed. If you do not want to
create this logic, you can put a higher number of transactions required to get a deposit

3

mailto:support@paycryptos.com

successfully credited to the account. But this will mean that the user will often wait for 30+
minutes to get the funds.

Holistic Picture
Player – user’s web browser
Client – client system with own website
Paycryptos – SoftGamings financial system

Deposit Algorithm

1. Before accepting deposits, a channel needs to be created for a user(meaning a payer or a
player).It will be created on a first request and all subsequent requests will just return info
about a channel.

2. A user makes a deposit to the channel address.
3. Our blockchain monitoring system searches for deposits by channel addresses.
4. A callback for found deposit is described in the Callbacks section.

Withdrawal Algorithm

1. A user creates a withdrawal request, but he can cancel it before it will be processed.
2. A withdrawal request can be approved or declined.
3. A payout file will be generated from approved requests and payout will be made.

4

4. Withdrawal callbacks are in development right now. Upon completion, callbacks will be sent
by the same channel URL as deposit callbacks but with different payment statuses and
negative amounts.

Configuration

The base URL host for all API requests documented below is: https://paycryptos.com/api/v1
All API requests are performed over HTTPS and follow JSON API conventions. All data is sent and
received as JSON with the content type application/json.

Request and Response Format

All API requests are performed over HTTPS and follow JSON API conventions. All data is sent and
received as JSON with the content type application/json.

5

Authentication Headers

All requests to the API must include the following headers for authentication:

X-Сryptspay-Key: ...
X-Cryptspay-Nonce: ...
X-Cryptspay-Signature: ...

Using curl:

curl -H "X-Cryptspay-Key: ..." -H "X-Cryptspay-Nonce: ..." -H "X-Cryptspay-Signature: ..." ...

See Authentication section for a detailed description

GET Requests

It is recommended to set the "Accept" header as follows:

Accept: application/json

Using curl:

curl -H "Accept: application/json" ...

POST Requests

POST requests must send data in JSON format within a request body and have a header

Content-Type: application/json:

POST /api/v1/test
Content-Type: application/json
Accept: application/json

{
"foobar": "some value",
"foo": 12345,
"bar": 0.75

}

Using curl:

curl -H "Content-Type: ..." -H "Accept: ..." -X POST \
-d '{"foobar": "some value", "foo": 12345, "bar": 0.75}' ...

6

Responses

All API server responses are in JSON format with a Content-Type application/json:

HTTP/1.1 200 OK
Content-Type: application/json

{
"result": "OK"

}

Appropriate HTTP status codes are used both for successful processing and in case of errors.

Success Responses

Successful responses have one of the following HTTP status codes:

Situation HTTP status code

Request was accepted, validated and processed 200 OK

Same as above, plus a resource was created as a result 201 Created

All success responses always have the following key:

Key Type Description

result string For success result is always OK

Error Responses

In case of any error a server responds with an appropriate HTTP status code and a JSON body:

HTTP/1.1 406 Forbidden
Content-Type: application/json
{

"result": "FAIL",
"message": "Request signature mismatch"

}

All error responses have the following format:

Key Type Description

result string For errors result is always FAIL

message string Human readable description of the error

7

Authentication

To use the Paycryptos API you must use an API token and an API Secret from your Paycryptos
account. All requests to the API have to be authenticated using this token information in the
headers.

Each valid authenticated request has to include the following HTTP headers:
X-Cryptspay-Key: ...
X-Cryptspay-Nonce: ...
X-Cryptspay-Signature: ...

Paycryptos API key: X-Cryptspay-Key

X-Cryptspay-Key is the API access key which you receive when you generate an API access
token. It is a sequence of hex-digits represented as a string in uid format, randomly generated
when an account is created.

API access keys are case-sensitive.

Example
X-Cryptspay-Key: bce83fb6-2577-4e56-9984-e8fa7661abba

Nonce: X-Cryptspay-Nonce

X-Cryptspay-Nonce is a 64-bit integer number, which you must generate for every request you
make to the API. This nonce ("number used once") has to meet the following two requirements:

1. Nonce must be unique for every request you make with the same API access key, ever. If
you make a request with the same API access key and nonce again, it will be rejected.

2. Every nonce that you generate for the request, has to be greater than any of the previous
nonces that you used to make requests to the API. There is no way to reset the nonce
value for a given API key but you can always just generate a new API key.

One way to generate nonces is to use the UNIX epoch timestamp of the request. Be sure, though,
that you use enough precision: if you use only the seconds part of the timestamp and you send two
requests to the API within the same second, one of them will be rejected. It is recommended that
you use the UNIX epoch to microsecond resolution. The nonce value must be representable as an
unsigned 64-bit integer therefore it has to be within the range [0..18446744073709551615]

Example
X-Cryptspay-Nonce: 1411754081462609

8

Paycryptos API secret:

The secret is a randomly generated 24 character long string from the character set:

'abcdefghijklmnopqrstuvwxyz!@#$%^&*()[]-+_.ABCDEFGHIJKLMNOP1234567890'.

Upon creation of a new API token, the secret is displayed in the web-interface.

Signature: X-Cryptspay-Signature

The signature is derived from the API secret, the nonce (X-Cryptspay-Nonce) and
the request body. Its format is a hex-string representation of the result of the following hash
calculation:

HMAC-SHA512(msg, k)

Where:
​ k - is your API secret as UTF-8 string
​ msg - is a UTF-8 string, constructed by string concatenation of uri_path + nonce +

SHA256(request_data)

uri_path - is the path part of the request URI as UTF-8 string
nonce - is the nonce (X-Cryptspay-Nonce) of the request, converted to a UTF-8 string
SHA256(request_data) is the hex-encoded SHA256 digest of request_data , as a UTF-8

string, request_data is either the JSON encoded request body in case of POST requests, or the
URL-encoded query in case of a GET request as specified in RFC3986

PHP example:

function signRequest($params) {
$request_hash = hash('sha256', $params['request_data']);
return hash_hmac(

'sha512',
implode('', [$params['path'], $params['nonce'], $request_hash]),
$params['secret']

);
}

9

Testing (Ping)

GET /api/v1/ping/app

This request is intended to be used to test whether your application is configured properly and can
access the Paycryptos API using GET requests

Request:
Any

Response:
On success, the API responds with HTTP status 200 OK and the following attributes:

Attribute Data type Description

result string OK

Errors:
On error, the API responds with standard error responses:

Situation HTTP status code MessageUnauthorized access

Invalid user api token 401 Unauthorized Unauthorized access

Invalid request signature 406 Not Acceptable Request signature mismatch

Example
Request:

GET /api/v1/ping/app HTTP/1.1
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****

Response:
HTTP/1.1 200 OK
Content-Type: application/json
{

"result": "OK"
}

10

POST /api/v1/ping/app

This request is intended to be used to test whether your application is configured properly and can
access the Paycryptos API using POST requests

Request:
There are no required parameters, but you can pass any parameters to test whether your signature
calculation is correct

Response:
On success, the API responds with HTTP status 200 OK and the following attributes:

Attribute Data type Description

result string OK

Errors:
On error, the API responds with standard error responses:

Situation HTTP status code MessageUnauthorized access

Invalid user api token 401 Unauthorized Unauthorized access

Invalid request signature 406 Not Acceptable Request signature mismatch

Example
Request:

POST /api/v1/ping/app HTTP/1.1
Content-Type: application/json
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****
{

"foo": "123.0",
"bar": true

}
Response:

HTTP/1.1 200 OK
Content-Type: application/json
{

"result": "OK"
}

11

Channels

Paycryptos channels are a way to receive and potentially convert cryptocurrency payments of
variable amounts and without a set validity period. Cryptocurrency sent to a channel can be
automatically converted into an associated payer currency at the current exchange rate at the
moment of the payment and such conversion never changes after that. Channels have a fixed
payment address and support callbacks. Channels also provide a way of tracking individual
payments made to them. A list of transactions is recorded for each channel and returned upon
querying a channel's transactions. Possible use cases for Paycryptos channels are accepting
donations on a website or just keeping track of payments to a certain address.

POST /api/v1/channel/create

If a channel doesn't exist this request will create it and mark one free address as busy for this
channel, otherwise a request will return channel info by requested wallet and payer identifier.

Request:
You must pass these required attributes:

Attribute Data type Description

external_id string(255) Payer identifier

external_name string(255) Payer name

wallet string(36) Wallet api key in UUID format

currency string(3) ISO 4217 code of the payer currency

callback_url string(255) Valid URL that is called when a channel status is
updated

success_url string(255) Valid URL to redirect a user after a successful payment

cancel_url string(255) Valid URL to redirect a user after a failed payment

Response:
On success, the API responds with HTTP status 200 OK (if a channel already exists) or HTTP
status 201 Created (if a channel doesn’t exist). A response has the following attributes in any of
these cases:

12

Attribute Data type Description

id string(36) Unique generated channel identifier in UUID format

channel_url string Unique URL of the channel payment screen on
Paycryptos

address string(255) Crypto address associated with this channel

currency string(3) ISO 4217 code of the user currency

Errors:
On error, the API responds with standard error responses and with some specific to this request:

Situation HTTP status code Message

Requested currency is not supported
for current user

404 Not Found Currency not supported by system

Requested currency is supported, but
now is disabled

404 Not Found Currency temporarily disabled

Wallet not found by requested wallet
key or this key is incorrect

404 Not Found Wallet not found

Requested currency is not supported
for the wallet found

404 Not Found Unsupported wallet currency

Requested wallet does't contain free
crypto addresses

404 Not Found Not found any free addresses for
wallet

Detected concurrent request 409 Conflict Concurrent request detected

Error occurred on address reservation
for channel

500 Internal Server
Error

Error occurred on address
reservation for channel

Error occurred on create channel 500 Internal Server
Error

Error occurred on create channel

System error occurred 500 Internal Server
Error

System error occurred

13

Example
Request:

POST /api/v1/channel/create HTTP/1.1
Content-Type: application/json
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****
{

"external_id": "201879",
"external_name": "164_275",
"wallet": "8fbe129b-99ae-4402-a1dd-788bdc641c15",
"currency": "EUR",
"callback_url": "https://example.com/callback",
"success_url": "https://example.com/success",
"cancel_url": "https://example.com/cancel"

}
Response:

HTTP/1.1 201 Created or HTTP/1.1 200 OK
Content-Type: application/json
{

"id" : "96bbf7e7-79e0-4d08-8555-3c39998e86d0",
"channel_url" :

"https://paycryptos.com/channels/96bbf7e7-79e0-4d08-8555-3c39998e86d0",
"address" : "4tYpFBhpzV7UJ3tskv7Sv9giDVWemkeHF72",
"currency" : "EUR"

}

GET /api/v1/info/{uid}

Get info about a channel by channel uid

Request:
You must pass these required attributes:

Attribute Data type Description

uid string(36) Unique identifier of a channel in UUID format

Response:
On success API responds with HTTP status 200 OK and the following attributes:

14

Attribute Data type Description

id string(36) Unique generated channel identifier in UUID format

channel_url string Unique URL of the channel payment screen on
Paycryptos

address string(255) Crypto address associated with this channel

currency string(3) ISO 4217 code of the channel currency

Errors:
On error, the API responds with standard error responses and with some specific to this request:

Sutiation HTTP status code Message

Request without required uid attribute 406 Not Acceptable Channel identificator not set

Channel wasn't found by requested uid
or this uid is incorrect

404 Not Found Channel not found or doesn’t
belong to user

System error occurred 500 Internal Server
Error

System error occurred

Example
Request:

GET api/v1/info/96bbf7e7-79e0-4d08-8555-3c39998e86d0 HTTP/1.1
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****

Response:
HTTP/1.1 200 OK
Content-Type: application/json
{

"id" : "96bbf7e7-79e0-4d08-8555-3c39998e86d0",
"channel_url" :

"https://paycryptos.com/channels/96bbf7e7-79e0-4d08-8555-3c39998e86d0",
"address" : "4tYpFBhpzV7UJ3tskv7Sv9giDVWemkeHF72",
"currency" : "EUR"

}

15

Withdraws

POST /api/v1/withdraws/request/{uid}

Create withdrawal request by channel uid

Request:
You must pass these required request attributes:

Attribute Data type Description

uid string(36) Unique identifier of the channel in UUID format

You must pass these required request parameters:

Attribute Data type Description

address string(255) Crypto address to withdraw

amount string Withdrawal amount in channel currency

external_txid string(255) External system transaction identifier

Response:
On success, the API responds with HTTP status 200 OK and json array of elements, each
element of this array has the following attributes:

Attribute Data type Description

result string OK or FAIL

amount string Wallet currency amount

fiat_ex_rate string Fiat currency backrate

crypto_ex_rate string Crypto currency backrate

id int Withdraw request identifier on our side

Errors:
On error, the API responds with standard error responses and with one specific to this request:

Situation HTTP status code Message

Withdrawal api not enabled for user 401 Unauthorized You can“t use withdrawal api

Request without required params 406 Not Acceptable Request not acceptable

16

Invalid channel uid 404 Not Found Unknown channel

Withdrawal request already exists 500 Internal Server
Error

Withdrawal request already exists

Invalid withdrawal address 406 Not Acceptable Withdrawal address is invalid

Insufficient wallet balance 406 Not Acceptable Insufficient wallet balance

Example
Request:

POST /api/v1/withdraws/request/96bbf7e7-79e0-4d08-8555-3c39998e86d0 HTTP/1.1
Content-Type: application/json
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****

Response:
HTTP/1.1 200 OK
Content-Type: application/json
{

"result" => "OK"
"id" : 12223,
"amount" : "0.00999834"
"crypto_ex_rate" : "0.0002323",
"fiat_ex_rate":"0.00334334"

}

POST /api/v1/withdraws/cancel/{id}

Canceling a withdrawal request based on an external system identifier. It works if the request has
not been processed

Request:
You must pass these required request attributes:

Attribute Data type Description

id string(255) External system withdrawal request identifier

17

Response:
On success, the API responds with HTTP status 200 OK and json array of elements, each
element of this array has the following attributes:

Attribute Data type Description

result string OK or FAIL

id string External system withdrawal request identifier

status string cancelled

Errors:
On error, the API responds with standard error responses and with one specific to this request:

Situation HTTP status code Message

Withdrawal api not enabled for user 401 Unauthorized You can’t use withdrawal api

Invalid external request id 404 Not Found Withdrawal request not found

Withdrawal request is processing 304 Not Modified Withdrawal request is already
processing

Example
Request:

POST /api/v1/withdraws/cancel/12223 HTTP/1.1
Content-Type: application/json
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****

Response:
HTTP/1.1 200 OK
Content-Type: application/json
{

"result" => "OK"
"id" : 12223,
"status" : "cancelled"

}

18

Currencies

GET /api/v1/currency/rate/{pair}

Get exchange rate for a currency pair

Request:
You must pass these required attributes:

Attribute Data type Description

pair string(7) Pair of different currencies, example BTC_USD

Response:
On success, the API responds with HTTP status 200 OK and the following attributes:

Attribute Data type Description

base string Base fiat currency for system, example USD

rate float Exchange rate

crypto_rate float Crypto rate

fiat_rate float Fiat rate

Errors:
On error, the API responds with standard error responses and with some specific to this request:

Situation HTTP status code Message

Requested currency pair is invalid 404 Not Found Invalid currency pair

One or more requested currencies not
found

404 Not Found Currency not found

Get the exchange rate from crypto to
crypto is not supported

406 Not Acceptable Not supported rate pair
crypto_crypto

Get the exchange rate from fiat to fiat
is not supported

406 Not Acceptable Not supported rate pair fiat_fiat

Example
Request:

GET /api/v1/currency/rate/BTC_EUR HTTP/1.1
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Signature: *****

19

Response:
HTTP/1.1 200 OK
Content-Type: application/json
{

"base" : "USD",
"rate" : "1"
"crypto_rate" : "1"
"fiat_rate" : "1"

}

20

Callbacks

Paycryptos sends a callback three times for each payment to the channel's callback url.
Each callback corresponds to three states of a payment: new, confirmed, and unblocked.

​ new - the payment’s state, when it is found in the mempool or blockchain, and it may be not
included in the block;

​ confirmed - the payment’s state, when it has reached the minimum required number of
confirmations set in the wallet settings for deposits confirmations;

​ unblocked - the payment’s state, when it has reached the maximum required number of
confirmations set in the wallet settings for withdrawal confirmations;

Each callback contains signature, you can check it

HMAC-SHA512(msg, k)

Where:
​ k - is your API secret as UTF-8 string
​ msg - is a UTF-8 string, constructed by string concatenation of callback_id + nonce +

SHA256(request_data)

​ callback_id - is the callback identificator as UTF-8 string
​ nonce - is the nonce (X-Cryptspay-Nonce) of the request, converted to a UTF-8 string
​ SHA256(request_data) - is the hex-encoded SHA256 digest of request_data , as a UTF-8

string, request_data is either the JSON encoded request body in case of POST requests, or
the URL-encoded query in case of a GET request as specified in RFC3986

Example
Request:

POST https://apiprod.example.org/Paycryptos/Callback
Content-Type: application/json
Accept: application/json
X-Cryptspay-Key: *****
X-Cryptspay-Nonce: *****
X-Cryptspay-Callback: 196
X-Cryptspay-Signature: *****
{

"status":"new",
"amount":"0.10000000",
"receiver":
{

"amount":"3.79894171",
"currency":"EUR",
"crypto_ex_rate":"43.42000000",
"fiat_ex_rate":"0.87492900"

},

21

"txid":"bfee8b15f6f0391f8242168df6bb9605d45312ae9e2cbc5204ea167e87f2f2ca",
"address":"QYMc9wrQunpJ7sMCQrpL3za4CRt7q1QR8C",
"channel_id":"ac1c9040-c498-45f1-8b71-65411ecbd15c",
"currency":"LTC",
"id":"196"

}
Response:

HTTP/1.1 200 OK
Content-Type: application/json
{

"result" : "OK",
}

Success Responses

Successful responses have one of the following HTTP status codes:

Situation HTTP status code

Request was accepted, validated and processed 200 OK

Same as above, plus a resource was created as a result 201 Created

All success responses always have the following key:

Key Type Description

result string For success result always is OK

22

Error Responses

In case of any error a merchant server responds with an appropriate HTTP status code and a
JSON body:

HTTP/1.1 200
Content-Type: application/json
{

"result": "FAIL",
"message": "Can't create payment by some reason"

}

All error responses have the following format:

Key Type Description

result string For errors result is always FAIL

message string Human readable description of an error

23

